Non-inferiority clinical trials: a multivariate test for multivariate PD

C.M. Laffont ${ }^{1}$, M. Fink ${ }^{2}$, D. Concordet ${ }^{1}$

${ }^{1}$ INRA, UMR 1331, Toxalim, Toulouse, France;
Université de Toulouse, INPT, ENVT, UPS, EIP, Toulouse, France ${ }^{2}$ Novartis Pharma AG, Basel, Switzerland

Problem

Multiple PD endpoints are a common feature of clinical trials

Ex: rheumatoid arthritis (ACR), Alzheimer's Disease (ADAS-cog), schizophrenia (PANSS), depression (HAMD)

Problem

- The objective of the trial is to compare a test drug with a positive or negative control by doing a statistical test

Endpoint 1 Endpoint 2

Statistician

Endpoint 3
.. Endpoint K

"Summary" variable

- Binary variables (responders: yes/no)
- Sum of scores (categorical)
- A function of "continuous" responses

Problem

- The problem of the "summary" variable is the inevitable loss of information associated with the reduction in dimension
- So it seems that keeping all endpoints for the analysis is more appropriate
- Generally, endpoints are not all continuous variables but include categorical data (binary, ordinal, counts), which increases the complexity of the analysis
- In that case, a modeling approach allows to recover the "continuous case", which increases power

Problem

- Multiple endpoints: how to test drug efficacy?
- Here, we will focus on non-inferiority analysis which is the most common analysis when a test drug and a positive control are compared
- What does non-inferiority means?
- In one dimension (one endpoint)
- In multiple dimensions (multiple endpoints)

Non-inferiority in one dimension

- Let θ be the ratio of effects (drug/control). In case of identical effects, $\theta=1$
- Hypotheses: $H_{0}: \theta<$ non-inferiority margin (here 0.8) $H_{1}: \theta \geq$ non-inferiority margin
- α is the risk to wrongly conclude non-inferiority (5\%)
- $\hat{\theta}$ is the sample estimate. Non-inferiority is concluded when its 90% confidence interval (CI) is above 0.8

Non-inferiority in $K>1$ dimensions

- Now imagine that we have K endpoints
- For each endpoint k, θ_{k} is the effect ratio and $H_{0, k}$ is the null hypothesis
- Global null hypothesis: $\mathbf{2}$ possible definitions of inferiority

$$
\begin{aligned}
& H_{0}=\bigcup_{k} H_{0, k} \\
& H_{0}=\bigcap_{k} H_{0, k}
\end{aligned}
$$

"Union": non-inferiority must be demonstrated on all endpoints
"Intersection": non-inferiority must be demonstrated on ≥ 1 endpoint

Non-inferiority in $K>1$ dimensions

2 strategies

Multiple univariate tests

Single multivariate test

- Test each endpoint separately
- Compile the results of univariate analyses

Objective: evaluate the gain in power for a single multivariate test vs. the compilation of univariate tests

First strategy: multiple univariate tests

- We need to penalize for the multiplicity of the tests to keep a global α risk of 5%
- Bonferroni correction: we use $\frac{\alpha}{K}$ instead of α

Cl are larger than without Bonferroni correction, which requires to increase the number of subjects N
$N \times 2$ when $K=5$ endpoints

Second strategy: single multivariate test

- Instead of multiple univariate Cls, we compute a multivariate confidence region
- We assume that the sample size is sufficiently large so that the estimator $\hat{\theta}$ is normally distributed (common assumption in pop $\mathrm{PK} / \mathrm{PD}$)

$$
\hat{\theta} \sim N(\theta, \operatorname{Var}(\hat{\theta}))
$$

$$
\operatorname{Var}(\hat{\theta}) \approx \frac{1}{N} I(\theta)^{-1}
$$

I : Fisher Information

- The 90% confidence region is an ellipsoid with equation:

$$
(\theta-\hat{\theta})^{\prime} \operatorname{Var}(\hat{\theta})^{-1}(\theta-\hat{\theta}) \leq \chi_{0.90, K d f}^{2}
$$

Single test: 2 endpoints

Inferiority on $\theta_{1}\left(H_{0,1}\right)$

Single test: 2 endpoints

Inferiority on $\theta_{2}\left(H_{0,2}\right)$

Single test: 2 endpoints

$\square+\square$Inferiority on θ_{1} or θ_{2} ("Union" H_{0})
Inferiority on θ_{1} and θ_{2} ("Intersection" H_{0})

Comparison of the two strategies

- Case of "Union" non-inferiority analysis

"Union" non-inferiority

- ... but they will always lie below the lower limits of Bonferroni-corrected Cls

"Union" non-inferiority

- So for "Union" non-inferiority, we gain nothing !

"Union" non-inferiority: influence of correlations

- Correlation has no impact
- The lower limits of the 90\% confidence region correspond to T^{2} intervals (Hotelling's T^{2})

Correlation changes but the lower limits (blue) are the same

Bivariate case

What about "Intersection" non-inferiority?

- No definitive answer depending on the values of SE, on the correlations and on the number of endpoints
- Influence of correlations

"Intersection" non-inferiority

- Influence of the number of endpoints K

- The structure of the variance-covariance matrix of $\hat{\theta}$ is very important as this gives the shape of the confidence region (ellipsoid)
- We chose to illustrate this aspect using the following settings

$$
\hat{\theta}=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

$$
\operatorname{Var}(\hat{\theta})=S E^{2} \times\left(\begin{array}{cccc}
1 & \rho & \cdots & \rho \\
\rho & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \rho \\
\rho & \ldots & \rho & 1
\end{array}\right)
$$

No difference between treatments

Identical standard errors

"Intersection" non-inferiority

- Influence of the number of endpoints K

$$
\begin{aligned}
& \begin{array}{l}
\text { In each case, we compute } \\
\text { the number of subjects } N \\
\text { to achieve non-inferiority }
\end{array} \\
& \operatorname{Var}(\hat{\theta})=S E^{2}\left(\begin{array}{cccc}
1 & \rho & \cdots & \rho \\
\rho & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \rho \\
\rho & \cdots & \rho & 1
\end{array}\right)
\end{aligned}
$$

Number of endpoints

Application to real clinical data

- Robenacoxib to treat chronic osteoarthritis in dogs
- 3 randomized blinded clinical trials with positive control
- 4 endpoints: ordinal scales coded as 0 (normal)-1-2-3 (severe)

6220 observations
Total of 294 dogs
Robenacoxib: $N=232$
Control: $N=62$

"Lameness at walk"
"Lameness at trot"

Application: joint mixed effects model

- Each scale $k=$ categorization of a latent continuous variable $Y_{k}{ }^{*}$
- All correlations between the latent variables were assessed Laffont al. PAGE 21 (2012) Abstr 2548
- $\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)$: ratios for robenacoxib efficacy vs. control

Application: methods and results

- "Intersection" non-inferiority concluded when no overlap between H_{0} region and multivariate 90% confidence region
- Evaluation by Monte Carlo simulations ($K=4$)
- $\operatorname{Var}(\hat{\theta})$ obtained from the joint model analysis
"Intersection" non-inferiority was demonstrated with the single multivariate test, not with multiple univariate tests Lower bounds of Bonferroni-corrected Cl ranged between 0.76 and 0.78 , all < 0.8

Single multivariate test: conclusion

- It is usually claimed that a single multivariate test is more powerful to show a significant difference $\left(\theta \neq \theta_{0}\right)$
- For non-inferiority, things are a bit more complicated
- For "Union" test, we systematically loose power compared to simple Bonferroni-corrected CIs
- For "Intersection" test, no definitive answer, but what is the relevance of "intersection" non-inferiority?
\square An increase in dimension appears to be a problem!
\square Fortunately, there are modeling techniques that can help in reducing dimension without loosing information (compared to "summary" variables), but this is another story...

Surprising question... Thank you!

Factor analysis

> In this example, all the information is summarized by only 2 latent variables

